A New Lifetime Model: The Kumaraswamy Extension Exponential Distribution
نویسندگان
چکیده
منابع مشابه
A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution
Finding new families of distributions has become a popular tool in statistical research. In this article, we introduce a new flexible four-parameter discrete model based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-Olkin exponential distribution. The proposed distribution can be viewed as another generalization of the geometric distribution and enfolds some importan...
متن کاملThe Kumaraswamy-geometric distribution
In this paper, the Kumaraswamy-geometric distribution, which is a member of the T -geometric family of discrete distributions is defined and studied. Some properties of the distribution such as moments, probability generating function, hazard and quantile functions are studied. The method of maximum likelihood estimation is proposed for estimating the model parameters. Two real data sets are us...
متن کاملIntroducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz
In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...
متن کاملThe Complementary Exponentiated Exponential Geometric Lifetime Distribution
We proposed a new family of lifetime distributions, namely, complementary exponentiated exponential geometric distribution. This new family arises on a latent competing risk scenario, where the lifetime associated with a particular risk is not observable but only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of it...
متن کاملA New Lifetime Distribution: The Beta Modified Weibull Power Series Distribution
In this paper, we propose a new parametric distribution which called as the Beta Modified Weibull Power Series (BMWPS) distribution. This distribution is obtained by compounding Beta Modified Weibull (BMW) and power series distributions. BMWPS distribution contains, as special sub-models, such as Beta Modified Weibull Poisson (BMWP) distribution, Beta Modified Weibull Geometric (BMWG) distribut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Access Biostatistics & Bioinformatics
سال: 2018
ISSN: 2578-0247
DOI: 10.31031/oabb.2018.02.000527